工艺连续性不同气体保护焊受电弧稳定性限制,速度过快易出现 “未熔合”“咬边” 等缺陷;激光焊搭配自动化送丝和视觉定位时,工艺稳定性更高,可长期维持高速焊接,不易出现质量波动。
关键机制:“匙孔效应” 的熔合
激光焊能形成独特的 “匙孔效应”,这是它速度快的另一大关键。
高能量激光束照射金属表面时,金属瞬间汽化,形成一个微小的 “孔”(匙孔)。
激光束可以直接穿过这个孔,深入工件内部,同时熔化孔壁的金属。
随着焊枪移动,熔化的金属在后方快速凝固,形成焊缝。整个过程相当于 “激光直接在金属上‘钻’着走”,无需像气体保护焊那样靠电弧逐步铺展熔池。
气体保护焊没有 “匙孔”,只能靠电弧在金属表面形成一个宽而浅的熔池,必须慢速移动才能让熔池充分融合,否则容易出现未焊透或焊缝不连续的问题。
成本与品质平衡:车企会根据车型定位选择工艺,普通家用车的底盘用气体保护焊控制成本,高端车型的车顶和铝合金部件用激光焊提升品质。
自动化适配差异:两者均能融入机械臂自动化生产线,但激光焊对工装精度要求更高,常搭配视觉定位系统,而气体保护焊的工装调试更简单,适合多品种小批量生产。
车身性能互补:气体保护焊保证车身 “骨架” 的承载能力,激光焊确保 “表皮” 和精密部件的轻量化、高精度,共同提升汽车的性能和燃油经济性。
气体保护焊的质量优势场景
对焊缝外观要求不高的结构件(如卡车车架),即使有轻微波纹,也不影响整体强度。
厚板焊接(≥15mm),通过多层多道焊可弥补热影响区大的问题,保证焊缝填满和强度。
现场维修或小批量生产,无需复杂工装,通过经验调整参数即可满足基础质量要求。

