选票读票机(Vote Counting Machine)是用于自动化处理选举选票、快速统计投票结果的电子设备,核心功能包括:
选票识别:读取选票上的标记(如填涂、手写符号、条形码等),判断选民选择的候选人或选项。
数据统计:实时汇总选票数据,生成各候选人得票率、有效票 / 无效票数量等统计结果。
数据存储与导出:保存原始选票数据和统计结果,支持导出至选举管理系统或打印纸质报告。
异常检测:识别重复投票、空白票、多选票等异常情况,并标记或报错。
图像预处理:优化原始扫描数据
灰度化处理:将彩色图像转换为灰度图,突出标记与背景的亮度差异(如铅笔填涂区域灰度值较低)。
二值化转换:通过设定阈值(如灰度值低于 128 视为标记),将图像转化为黑白二值图,简化后续计算(例:填涂框内黑色像素占比≥30% 视为有效标记)。
噪声过滤:利用中值滤波、高斯滤波等算法,消除纸张污渍、折叠阴影等干扰(如去除面积小于 10 像素的孤立黑点)。
几何校正:通过检测选票边缘的定位标记(如 registration marks),校正因传送歪斜导致的图像旋转或缩放,确保标记位置与预设模板对齐。
典型技术挑战与解决方案
挑战场景 技术应对措施
不同墨水的反光差异 - 采用多光谱光源(如红光 + 红外光),针对不同墨水(铅笔、蓝黑墨水、荧光笔)调整检测波长。
- 机器学习模型训练:用历史数据训练分类器,区分不同墨水材质的标记。
选票折叠或污渍干扰 - 图像修复算法:通过插值法填充折叠造成的图像缺失区域。
- 污渍识别模型:用深度学习区分 “人为标记” 与 “自然污渍”(如咖啡渍形状通常更不规则)。
非标准填涂(如超框、轻描) - 弹性阈值设定:根据填涂中心位置,允许标记超出框线一定范围(如框线外 5 像素内仍算有效)。
- 概率化判定:结合填涂位置、面积、浓度等多维度特征,给出 “有效概率”(如 80% 概率为有效标记),而非非黑即白的判断。
选票格式变更(如新版选票) - 动态模板配置:允许管理员导入新选票模板,自动更新 ROI 区域坐标与标记规则,无需修改底层算法。
南昊(北京)科技有限公司专业为广大客户提供:投票选举计票系统,换届选举选票计票器,选票计票器(机),选票读票器(机),电子选票机(器),电子票箱,智能扫描选举读票机等系统设备租售服务。